direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary
Aliases: C23×F5, D5.C24, D10.15C23, C5⋊(C23×C4), C10⋊(C22×C4), D5⋊(C22×C4), D10⋊9(C2×C4), (C22×C10)⋊5C4, (C22×D5)⋊6C4, (C23×D5).4C2, (C22×D5).40C22, (C2×C10)⋊3(C2×C4), SmallGroup(160,236)
Series: Derived ►Chief ►Lower central ►Upper central
C5 — C23×F5 |
Generators and relations for C23×F5
G = < a,b,c,d,e | a2=b2=c2=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >
Subgroups: 644 in 236 conjugacy classes, 134 normal (7 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C23, C23, D5, D5, C10, C22×C4, C24, F5, D10, C2×C10, C23×C4, C2×F5, C22×D5, C22×C10, C22×F5, C23×D5, C23×F5
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, F5, C23×C4, C2×F5, C22×F5, C23×F5
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 11)(7 12)(8 13)(9 14)(10 15)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 16)(2 18 5 19)(3 20 4 17)(6 11)(7 13 10 14)(8 15 9 12)(21 36)(22 38 25 39)(23 40 24 37)(26 31)(27 33 30 34)(28 35 29 32)
G:=sub<Sym(40)| (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,16)(2,18,5,19)(3,20,4,17)(6,11)(7,13,10,14)(8,15,9,12)(21,36)(22,38,25,39)(23,40,24,37)(26,31)(27,33,30,34)(28,35,29,32)>;
G:=Group( (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,16)(2,18,5,19)(3,20,4,17)(6,11)(7,13,10,14)(8,15,9,12)(21,36)(22,38,25,39)(23,40,24,37)(26,31)(27,33,30,34)(28,35,29,32) );
G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,11),(7,12),(8,13),(9,14),(10,15),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,16),(2,18,5,19),(3,20,4,17),(6,11),(7,13,10,14),(8,15,9,12),(21,36),(22,38,25,39),(23,40,24,37),(26,31),(27,33,30,34),(28,35,29,32)]])
C23×F5 is a maximal subgroup of
D10⋊(C4⋊C4) (C2×F5)⋊D4
C23×F5 is a maximal quotient of Dic5.C24 D10.C24 Dic5.20C24 D5.2- 1+4 Dic5.21C24 Dic5.22C24 D5.2+ 1+4
40 conjugacy classes
class | 1 | 2A | ··· | 2G | 2H | ··· | 2O | 4A | ··· | 4P | 5 | 10A | ··· | 10G |
order | 1 | 2 | ··· | 2 | 2 | ··· | 2 | 4 | ··· | 4 | 5 | 10 | ··· | 10 |
size | 1 | 1 | ··· | 1 | 5 | ··· | 5 | 5 | ··· | 5 | 4 | 4 | ··· | 4 |
40 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 4 | 4 |
type | + | + | + | + | + | ||
image | C1 | C2 | C2 | C4 | C4 | F5 | C2×F5 |
kernel | C23×F5 | C22×F5 | C23×D5 | C22×D5 | C22×C10 | C23 | C22 |
# reps | 1 | 14 | 1 | 14 | 2 | 1 | 7 |
Matrix representation of C23×F5 ►in GL7(𝔽41)
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 40 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 40 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
40 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 40 |
0 | 0 | 0 | 1 | 0 | 0 | 40 |
0 | 0 | 0 | 0 | 1 | 0 | 40 |
0 | 0 | 0 | 0 | 0 | 1 | 40 |
32 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 32 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 1 |
0 | 0 | 0 | 0 | 1 | 0 | 0 |
G:=sub<GL(7,GF(41))| [1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,40,40,40,40],[32,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0] >;
C23×F5 in GAP, Magma, Sage, TeX
C_2^3\times F_5
% in TeX
G:=Group("C2^3xF5");
// GroupNames label
G:=SmallGroup(160,236);
// by ID
G=gap.SmallGroup(160,236);
# by ID
G:=PCGroup([6,-2,-2,-2,-2,-2,-5,96,2309,317]);
// Polycyclic
G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations