Copied to
clipboard

G = C23×F5order 160 = 25·5

Direct product of C23 and F5

direct product, metabelian, supersoluble, monomial, A-group, 2-hyperelementary

Aliases: C23×F5, D5.C24, D10.15C23, C5⋊(C23×C4), C10⋊(C22×C4), D5⋊(C22×C4), D109(C2×C4), (C22×C10)⋊5C4, (C22×D5)⋊6C4, (C23×D5).4C2, (C22×D5).40C22, (C2×C10)⋊3(C2×C4), SmallGroup(160,236)

Series: Derived Chief Lower central Upper central

C1C5 — C23×F5
C1C5D5F5C2×F5C22×F5 — C23×F5
C5 — C23×F5
C1C23

Generators and relations for C23×F5
 G = < a,b,c,d,e | a2=b2=c2=d5=e4=1, ab=ba, ac=ca, ad=da, ae=ea, bc=cb, bd=db, be=eb, cd=dc, ce=ec, ede-1=d3 >

Subgroups: 644 in 236 conjugacy classes, 134 normal (7 characteristic)
C1, C2, C2, C4, C22, C22, C5, C2×C4, C23, C23, D5, D5, C10, C22×C4, C24, F5, D10, C2×C10, C23×C4, C2×F5, C22×D5, C22×C10, C22×F5, C23×D5, C23×F5
Quotients: C1, C2, C4, C22, C2×C4, C23, C22×C4, C24, F5, C23×C4, C2×F5, C22×F5, C23×F5

Smallest permutation representation of C23×F5
On 40 points
Generators in S40
(1 21)(2 22)(3 23)(4 24)(5 25)(6 26)(7 27)(8 28)(9 29)(10 30)(11 31)(12 32)(13 33)(14 34)(15 35)(16 36)(17 37)(18 38)(19 39)(20 40)
(1 16)(2 17)(3 18)(4 19)(5 20)(6 11)(7 12)(8 13)(9 14)(10 15)(21 36)(22 37)(23 38)(24 39)(25 40)(26 31)(27 32)(28 33)(29 34)(30 35)
(1 6)(2 7)(3 8)(4 9)(5 10)(11 16)(12 17)(13 18)(14 19)(15 20)(21 26)(22 27)(23 28)(24 29)(25 30)(31 36)(32 37)(33 38)(34 39)(35 40)
(1 2 3 4 5)(6 7 8 9 10)(11 12 13 14 15)(16 17 18 19 20)(21 22 23 24 25)(26 27 28 29 30)(31 32 33 34 35)(36 37 38 39 40)
(1 16)(2 18 5 19)(3 20 4 17)(6 11)(7 13 10 14)(8 15 9 12)(21 36)(22 38 25 39)(23 40 24 37)(26 31)(27 33 30 34)(28 35 29 32)

G:=sub<Sym(40)| (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,16)(2,18,5,19)(3,20,4,17)(6,11)(7,13,10,14)(8,15,9,12)(21,36)(22,38,25,39)(23,40,24,37)(26,31)(27,33,30,34)(28,35,29,32)>;

G:=Group( (1,21)(2,22)(3,23)(4,24)(5,25)(6,26)(7,27)(8,28)(9,29)(10,30)(11,31)(12,32)(13,33)(14,34)(15,35)(16,36)(17,37)(18,38)(19,39)(20,40), (1,16)(2,17)(3,18)(4,19)(5,20)(6,11)(7,12)(8,13)(9,14)(10,15)(21,36)(22,37)(23,38)(24,39)(25,40)(26,31)(27,32)(28,33)(29,34)(30,35), (1,6)(2,7)(3,8)(4,9)(5,10)(11,16)(12,17)(13,18)(14,19)(15,20)(21,26)(22,27)(23,28)(24,29)(25,30)(31,36)(32,37)(33,38)(34,39)(35,40), (1,2,3,4,5)(6,7,8,9,10)(11,12,13,14,15)(16,17,18,19,20)(21,22,23,24,25)(26,27,28,29,30)(31,32,33,34,35)(36,37,38,39,40), (1,16)(2,18,5,19)(3,20,4,17)(6,11)(7,13,10,14)(8,15,9,12)(21,36)(22,38,25,39)(23,40,24,37)(26,31)(27,33,30,34)(28,35,29,32) );

G=PermutationGroup([[(1,21),(2,22),(3,23),(4,24),(5,25),(6,26),(7,27),(8,28),(9,29),(10,30),(11,31),(12,32),(13,33),(14,34),(15,35),(16,36),(17,37),(18,38),(19,39),(20,40)], [(1,16),(2,17),(3,18),(4,19),(5,20),(6,11),(7,12),(8,13),(9,14),(10,15),(21,36),(22,37),(23,38),(24,39),(25,40),(26,31),(27,32),(28,33),(29,34),(30,35)], [(1,6),(2,7),(3,8),(4,9),(5,10),(11,16),(12,17),(13,18),(14,19),(15,20),(21,26),(22,27),(23,28),(24,29),(25,30),(31,36),(32,37),(33,38),(34,39),(35,40)], [(1,2,3,4,5),(6,7,8,9,10),(11,12,13,14,15),(16,17,18,19,20),(21,22,23,24,25),(26,27,28,29,30),(31,32,33,34,35),(36,37,38,39,40)], [(1,16),(2,18,5,19),(3,20,4,17),(6,11),(7,13,10,14),(8,15,9,12),(21,36),(22,38,25,39),(23,40,24,37),(26,31),(27,33,30,34),(28,35,29,32)]])

C23×F5 is a maximal subgroup of   D10⋊(C4⋊C4)  (C2×F5)⋊D4
C23×F5 is a maximal quotient of   Dic5.C24  D10.C24  Dic5.20C24  D5.2- 1+4  Dic5.21C24  Dic5.22C24  D5.2+ 1+4

40 conjugacy classes

class 1 2A···2G2H···2O4A···4P 5 10A···10G
order12···22···24···4510···10
size11···15···55···544···4

40 irreducible representations

dim1111144
type+++++
imageC1C2C2C4C4F5C2×F5
kernelC23×F5C22×F5C23×D5C22×D5C22×C10C23C22
# reps114114217

Matrix representation of C23×F5 in GL7(𝔽41)

1000000
04000000
00400000
0001000
0000100
0000010
0000001
,
40000000
04000000
0010000
0001000
0000100
0000010
0000001
,
40000000
0100000
0010000
0001000
0000100
0000010
0000001
,
1000000
0100000
0010000
00000040
00010040
00001040
00000140
,
32000000
03200000
0090000
0000010
0001000
0000001
0000100

G:=sub<GL(7,GF(41))| [1,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,0,40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[40,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,1,0,0,0,40,40,40,40],[32,0,0,0,0,0,0,0,32,0,0,0,0,0,0,0,9,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0,0,0,0,0,0,0,0,1,0] >;

C23×F5 in GAP, Magma, Sage, TeX

C_2^3\times F_5
% in TeX

G:=Group("C2^3xF5");
// GroupNames label

G:=SmallGroup(160,236);
// by ID

G=gap.SmallGroup(160,236);
# by ID

G:=PCGroup([6,-2,-2,-2,-2,-2,-5,96,2309,317]);
// Polycyclic

G:=Group<a,b,c,d,e|a^2=b^2=c^2=d^5=e^4=1,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,b*c=c*b,b*d=d*b,b*e=e*b,c*d=d*c,c*e=e*c,e*d*e^-1=d^3>;
// generators/relations

׿
×
𝔽